Central extensions and the Riemann-Roch theorem on algebraic surfaces

نویسندگان

چکیده

We study canonical central extensions of the general linear group ring adeles on a smooth projective algebraic surface $X$ by means integers. By these and adelic transition matrices rank $n$ locally free sheaf ${\mathcal O}_X$-modules we obtain local (adelic) decomposition for difference Euler characteristics this O}_X^n$. Two various calculations lead to Riemann-Roch theorem (without Noether formula).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemann–roch Theorem for Operations in Cohomology of Algebraic Varieties

The Riemann–Roch theorem for multiplicative operations in oriented cohomology theories for algebraic varieties is proved and an explicit formula for the corresponding Todd classes is given. The formula obtained can also be applied in the topological situation, and the theorem can be regarded as a change-of-variables formula for the integration of cohomology classes. The classical Riemann–Roch t...

متن کامل

Integral Grothendieck-riemann-roch Theorem

in the Chow ring with rational coefficients CH(S)Q = ⊕nCH (S)Q. Here ch is the Chern character and Td(TX), Td(TS) stand for the Todd power series evaluated at the Chern classes of the tangent bundle of X, respectively S. Since both sides of (1.1) take values in CH(S)Q := CH (S)⊗Q, only information modulo torsion about the Chern classes of f∗[F ] can be obtained from this identity. The goal of o...

متن کامل

Cohomology and the Riemann-Roch Theorem.

1. Let M be a complex-analytic manifold of (complex) dimension n, and let S be a non-singular analytic subvariety of M of dimension n 1. At each point p e S we can introduce local analytic coordinates zp, .. ., zp on M with center at p such that zp = on S and such thatz, ..., x become local coordinates on S. We denote by Qr = Qr(M) the faisceau of the germs of holomorphic r-forms, and by Qs the...

متن کامل

The Riemann-roch Theorem and Serre Duality

We introduce sheaves and sheaf cohomology and use them to prove the Riemann-Roch theorem and Serre duality. The main proofs follow the treatment in Forster [3].

متن کامل

The Grothendieck-riemann-roch Theorem for Varieties

We give an exposition of the Grothendieck-Riemann-Roch theorem for algebraic varieties. Our proof follows Borel and Serre [3] and Fulton [5] closely, emphasizing geometric considerations and intuition whenever possible.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sbornik Mathematics

سال: 2022

ISSN: ['1064-5616', '1468-4802']

DOI: https://doi.org/10.1070/sm9623